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Abstract
Computed ultrasound tomography in echomode (CUTE) is a newultrasound (US)-basedmedical
imagingmodality with promise for diagnosing various types of disease based on the tissue’s speed of
sound (SoS). It is developed for conventional pulse-echoUS using handheld probes and can thus be
implemented in state-of-the-artmedical US systems.One promising application is the quantification
of the liver fat fraction in fatty liver disease. So far, CUTEwas using linear array probeswhere the
imaging depth is comparable to the aperture size. For liver imaging, however, convex probes are
preferred since they provide a larger penetration depth and awider view angle allowing to capture a
large area of the liver.With the goal of liver imaging inmind, we adapt CUTE to convex probes, with a
special focus on discussing strategies thatmake use of the convex geometry in order tomake our
implementation computationally efficient.We then demonstrate in an abdominal imaging phantom
that accurate quantitative SoS using convex probes is feasible, in spite of the smaller aperture size in
relation to the image area compared to linear arrays. A preliminary in vivo result of liver imaging
confirms this outcome, but also indicates that deep quantitative imaging in the real liver can bemore
challenging, probably due to the increased complexity of the tissue compared to phantoms.

1. Introduction

Compared to other imagingmodalities, pulse-echo ultrasound (US) has the advantages of being real-time,
flexible, portable, non-ionizing, and low cost. Its classical grey-scale brightness (B)-mode display of tissue
structure, however, often suffers from low sensitivity and specificity, limiting the diagnostic performance of US.
Efforts to improve its diagnostic value have led to the development of newUS-basedmodalities that provide
complementary structural and functional diseasemarkers in amultiparametric approach. Apart from thewell-
established colourflow imaging, these include elastography (Athanasiou et al 2010, Cosgrove et al 2013, Dietrich
et al 2017, Sigrist et al 2017), andmore recent techniques like photoacoustic imaging (Mallidi et al 2011,Wang
andYao 2016, Attia et al 2019) and speed-of-sound (SoS) imaging (Wiskin et al 2012, Sandhu et al 2015,
Jakovljevic et al 2018,Natesan et al 2019,Wiskin et al 2019, Telichko et al 2022). In particular, the SoS is a
promising diseasemarker, as this property can reveal changes in tissue composition and architecture that are
related to variations in tissue’smass density and compressibility. In the context of fatty liver disease, for example,
in vivo studies have shownhigh correlations between SoS estimations and liver fat fraction (Imbault et al
2017, 2018, Burgio et al 2019). These studies used an autofocusing approach to determine the average SoS
between theUS probe and a selected point inside the liver. In order to accurately extract the SoS in liver, this
technique requires a correction for the average SoS of the different tissues of the abdominal wall (Imbault et al
2017). This can be done, for instance, by segmenting the abdominal wall and assuming its SoS.

Methods providing spatially resolvedmaps of tissue SoS could potentially improve liver fat fraction
estimations. They inherently account for the influence of the abdominal wall (Telichko et al 2022) and could, in
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principle, detect liver fat fraction variations across the liver volume. In this regard, computed ultrasound
tomography in echo-mode (CUTE)was introduced (Jaeger and Frenz 2015, Jaeger et al 2015a, 2015b, Stähli et al
2020, 2021). Themethod tracks echo positions detected under varying steering angles in transmit (Tx) (Jaeger
and Frenz 2015), receive (Rx) (Kuriakose et al 2018), or both (Stähli et al 2020, 2021). The tracking, which can be
done via phase correlation (Stähli et al 2020) or speckle tracking (Sanabria et al 2018), provides spatially resolved
maps of echo shifts that are related to tissue SoS. Thesemaps allow to reconstruct tomographic SoS images using
either frequency- (Jaeger et al 2015a, 2015b, Podkowa andOelze 2020) or space-domain (Sanabria et al 2018,
Stähli et al 2020, 2021) algorithms. As shown in (Stähli et al 2020), CUTE can provide reliable quantitative SoS
imageswhen a common-mid-angle (CMA) approach, with simultaneously and antidromically changing Tx and
Rx angles, is combinedwith an appropriate forwardmodel relating echo shift to SoS.

So far, all studies onCUTEhave focused on linear probes, although convex probes are preferred for liver
imaging due to their larger field of view. Compared to the linear probes, themain challenge of convex probes is
the small probe aperture size in relation to the desired imaging depth. This results in a poorer angle coverage far
away from the probe andmay complicate the SoS reconstruction in deep regions.With the goal of liver imaging
inmind, we describe an adaptation of CUTE (the newmodel as described in Stähli et al (2020)) to the geometry
of convex probes. The emphasis of our paper is on describing practical challenges that are specific to the curved
array geometry, and strategies tomake this adaptation computationally efficient. In the context of this technical
paper, we also detail the calibration procedure that is an integral part of themethodology proposed here and in
Stähli et al (2020, 2021)where it wasmistakenly omitted .We validate our implementation in two showcase
examples of deep quantitative imaging, namely in an abdominal phantom and in a volunteer liver, and evaluate
the influence of various probe geometry-specific parameters on the image quality and quantitative accuracy.

2.Methods andmaterials

The SoS reconstruction algorithm implemented in this study builds on themethodology described for linear
probes in Stähli et al (2020).We refer the reader to this publication for a thorough explanation of the physical
and computational principles of CUTE. This section focuses on extending CUTE to convex arrays and on the
requiredmodifications to the technology.

2.1. Convex probe geometry and coordinate conventions
Wefirst introduce the conventions regarding the probe geometry and coordinate systems adopted in this work.
Figure 1(a) illustrates the definition of the aperture curvature radius R, the angle a parametrising element
positions on the aperture surface, the radius and azimuth ( )r, J defining polar coordinates of an arbitrary
location in the imaging plane, and theCartesian coordinates ( )x z, for lateral and axial position of the same

Figure 1. (a)Notational convention for probe geometry and spatial coordinates. TheCartesian and the polar coordinate grid are
depicted as a solid rectangle and a sector area within dashed lines, respectively. A dashed curved line intersecting the aperturemidpoint
illustrates—for time t 0= —the curvedwavefront that is generated using the linear Tx delay law in equation (1). Thewavefront is
conceptually extended into the volume above the aperture surface. (b) Sketch supporting geometric derivations of equations 3 and 6.
(i)The total Tx propagation time to a point ( )r, J (equation (3)) is derived as follows: from ( ),p b- R, and R r,+ calculate the
angle (1)using the sine theorem; then, use (1) and b to calculate the angle (2); from R, R r,+ and (2), calculate the propagation path
length from the aperture surface to ( )r, J using the cosine theorem; finally, from J and (2), calculate the angle (3) and set a=(3) in
equation (1) to determine the Tx delay at the starting point of the propagation path. (ii)Derive the Tx angle j relative to the z-axis
(equation (6)) via the alternate interior angles theorem, from angles J and (1). (c) Sketch illustrating the limits of an image area
(indicated in gray) that is defined for a constant Tx angle j relative to the z-axis. In this example, the image area is limited on the left
side by maxb and on the right side by the aperture edge.
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location.We define z=0 at the straight line connecting the aperture edges and r=0 at the aperture surface.
Even though r x z, , , ,a J are discrete variables, we treat them as continuous throughout themanuscript for
notational simplicity.

2.2.Data acquisition
With linear arrays, we used plane-wave transmission for acquiring pulse-echo data. This choice ensures that—
for a given Tx angle—all points in the imaging plane are insonified under similar conditions (i.e. amplitude,
angle, and pulse shape) andwell-defined anticipated arrival time (in comparison, e.g., a line-by-line acquisition
with collimated beams has the disadvantage of the dependence of arrival time and amplitude on the position of
points relative to the beam axis).With convex arrays, however, planewaves have the disadvantage that they are
launched at different angles relative to the curved aperture surface, depending on the location on the aperture.
Therefore, they are only actual planewaves if the tissue SoS is not only uniform (a condition also requiredwith
linear arrays) but additionally its value agrees with the a priori SoS used for calculating Tx delays (a condition
only required for curved arrays). Else, unaccounted refraction at the probe-tissue interface leads to convergent
or divergent waves.When using a different a priori tissue SoS for delay-and-sum (see next section), onewould
thus have to take into account that the ‘plane’wave is no longer plane but curved. To avoid this problem,we
suggest in this study to use divergent transmissions that are generatedwith a linear Tx delay profile, i.e. a
constant delay time increment (slope) between successive elements. The delay times ( )ttx

k for the kth
transmission as a function of element position a are thus defined as:

( ) ( )( )t
R

c

sin
, 1tx

k k

tx

a
a b

=

where the index k refers to individual acquisitions. Figure 1(a) illustrates the resulting curvedwave front. By
definition, a linear delay profile (constant slope) ensures that the propagation angle of the emittedwave relative
to the aperture surface normal,measured at r=0, does not depend on the location on the aperture, .a
Assuming that the SoS of themedium is uniform and has the value c ,tx this propagation angle is given by the
parameter .kb This follows from the observation that the curved aperture can be approximated as linear within a
small neighbourhood around any arbitrary point a on the surface. Around the respective point, equation (1) is
identical to the linear Tx delays for generating a planewavewith the angle .kb Note that the constancy of the Tx
angle relative to the aperture surface normal follows from the linear slope of the delay profile alone, and thus
continues being valid even forwrong choices of ctx as long as the tissue’s SoS is uniform. This property will
become very practical further below.

In this study, we use Nb=81 such divergent transmissions, with Tx angles kb ranging from−40° to 40°
with a 1° angle step.

For each ,kb we store amatrix of complex-valued radio-frequency (crf) signals ( )s t, ,k a which is obtained
from the real-valued raw signals via theHilbert transform along t.Although the time is discrete, and t is actually
an index, we keep it as a continuous dimension for notational simplicity.

2.3. CRF image reconstruction
For each ,kb we reconstruct a crf-mode image using delay-and-sum (DAS) beamforming, which assumes a
uniform tissue SoSwith the a priori value c .0 Weexplicitly distinguish between the a priori SoS forDAS, c ,0 and
the one for defining the Tx delays in equation (1), c ,tx because our goal is to evaluate different choices of a priori
SoSwithout having to repeat the acquisition. Even though theTx delays ( )( )ttx

k a cannot be changed
retrospectively, it is possible to account for a c ctx0 ¹ in equation (1) by re-defining the effective kb thatmust be
used forDAS. This re-definition is possible if c ctx0/ times the sine of the original kb is smaller or equal to one
(else the effective kb does not exist). Given that—in practice– kb is substantially smaller than 90°, this condition
holds for arbitrary choices of c0 and ctx within the limits of realistic tissue SoS (roughly 1450–1650m s−1).

DAS requires a choice of the coordinate system for beamforming. In linewith previous studies on linear
arrays, we use in afirst step Cartesian coordinates also for the present study, so that the subsequent processing
steps requireminimal changes compared to the implementation for linear arrays. As a second choice, however,
we investigate Polar coordinates because they have several advantages overCartesian coordinates in terms of
computational andmemory cost:

(i) With convex arrays, the achievable lateral resolution of reconstructed echoes scales roughly proportionally to
( )R r .+ Apolar coordinate grid can bematched to this resolution, so that the number of grid nodes equals
the number of resolution cells. In comparison, a Cartesian gridwith a sufficientlyfine resolution near the
aperture over-resolves the area far from the aperture and thus contains substantiallymore nodes than needed.
DAS is therefore computationallymore efficient on a polar grid than on aCartesian one.
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(ii) Polar coordinates allow us to formulate the Rx propagation times from grid nodes in a translation-invariant
waywith respect to .J These propagation times therefore need to be calculated only once per r, either
reducing computational cost when calculating themon the fly duringDAS, or reducingmemory cost when
storing pre-calculated values.

In this study, we compare SoS image results obtainedwithCartesian and polarDAS coordinates. In the
following, we introduce equations in polar coordinates. For aCartesian grid, these expressions need to be
combinedwith a coordinate transformation from ( )x z, to ( )r, .J ForDAS, a crf-mode image ( )u r,k J is
calculated according to:

( ) ( [ˆ ( )]) (ˆ [ˆ ]) ( )u r s t r t t, , , , , phase . 2k k k0 0 0åJ a J a b= -
a

Here, t̂0 is the anticipated round-trip time, and [ˆ ]t0 is the time obtained after rounding t̂0 to the nearest time
sample. The phase ( )tD is a phase factor that compensates the timing error caused by this rounding, and is
defined as phase ( ) ( )t if texp 2 0pD = D with the centre frequency f .0 Weomitted the dependency of t̂0 on
( )r, , , kJ a b in the phase factor for brevity.

The anticipated round-trip time, which is the sumof Tx andRx times, can be derived via standard
trigonometric laws as depicted infigure 1(b). The Tx part follows:

ˆ ( ) ( ) ( ) ( ( ( ) · ))

( ( ( ) · )) ( )

t r
c

R R r R R r R R r

c
R R R r

, ,
1

2 cos asin sin

1
sin asin sin . 3

tx0,
0

2 2

0

/

/

J b b b

b J b b

= + + - + - +

+ - + +

Thefirst term is the propagation time from the aperture surface to ( )r, .J As shown infigure 1(b), it takes
into account the effective position on the aperture fromwhereUSwaves reach ( )r, J under the angle kb relative
to the aperture normal. The second term is the Tx delay according to equation (1) for the same effective position.
Note that the origin of the time axis, t 0,= is defined via equation (1) as the timewhen the transmitted pulse
meets the intersection of aperture surface and z-axis.

The Rx part is directly derived using the cosine theorem as

ˆ ( ) ( ) ( ) ( ) ( )t r
c

R R r R R r, ,
1

2 cos . 4rx0,
0

2 2J a J a= + + - + -

The total round-trip time is then:

ˆ ( ) ˆ ( ) ˆ ( ) ( )t r t r t r, , , , , , , 5tx rx0 0, 0,J a b J b J a= +

2.4. Coherent compounding
As described in Stähli et al (2020), we use coherent compounding to synthetically focus/collimate the
transmissionwith the goal to reduce clutter that stems frommultiple scattering and grating lobes, and to reduce
electric crosstalk.More precisely, for each angle out of a selection of Tx angles that is needed for phase tracking
(see further below), we sum the crf-images over a small sub-set of { }kb that is centred at the respective Tx angle.
When using a convex probe, the coherent compounding could in principle be performed along angles b relative
to the curvature normal, thus being consistent with the raw data acquisition. For a given ,b however, the
incidence angle relative to the radial coordinate decreases with r in a non-linear way. As a result, it is not possible
to choose a set of b so that propagation angles are equidistant in any node of the image grid. Equidistant angles
are, however, essential for computationally efficient implementation of the common-mid-angle (CMA)
approach that is a prerequisite for reliable quantitative SoS imaging: as described in Stähli et al (2020), using an
equidistant Tx angle set allows to defineCMAangles in away that the resulting Rx angle set is identical to the Tx
angle set, thusminimising the number of angles needed in the speed-of-sound inversion. To solve this problem,
in this study, the coherent compounding has an additional role on top of synthetic focusing: it performs a
transformation from the image set ( )u x z,k or ( )u r,k J (for kb defined relative to the curvature normal), to
synthesise compounded crf (c-crf) images ( )u x z, , nj or ( )u r, , nJ j for spatially uniform nj (defined relative to
z, as shown infigure 1(b)). The nj can be chosen equidistantly as in Stähli et al (2020). As a preparation, wefirst
write the spatially dependent propagation angle ( )r, , kj J b (derived according tofigure 1(b)) as:

( ) ( ( ) · ) ( )r a R R r, , sin sin . 6/j J b J b= + +
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The transformation to spatially uniform nj can be expressed as

( ) ( ( )) ( ) ( )u w u.,., .,., .,. , 7n
k

c n k kåj j j b= -

where ( ).,. stands for either ( )x z, or ( )r, .J Here, wc is a symmetric weighting function that decreases with
absolute difference between nj and ( ).,., .kj b For each pixel, it limits the sum to those k where ( ).,., kj b is within
an angular aperture around .nj

In this study, we choose an equidistant Tx angle set { }nj ranging from−55° to 55°with 2.5° step size. For wc

weuse aGaussian functionwith a 1/e2 radius (radius where amplitude is 1/e2 of themaximum) of 3°.When
polar coordinates are used forDAS, a scan conversion (interpolation) frompolar toCartesian coordinates is
performed after coherent compounding for each ,nj so that following steps are performed inCartesian
coordinates independent of the initial choice of coordinates. This will be important further below for the
frequency domain Rxfiltering used in the phase-shift tracking step. The scan conversionwas performed as
follows: (i) down-conversion frompolar crf-mode to IQ, bymultiplyingwith a complex exponential of r with

f0- as carrier; (ii)up-sampling by a factor 2 both in r and ;J (iii) cubic interpolation ontoCartesian grid; (iv) up-
conversion from IQ to crf-mode, bymultiplyingwith a complex exponential of r (defined onCartesian grid)
with f0 as carrier. The down- and up-conversionwas used to reduce theminimumup-sampling rate in r that
was required to avoid phase aliasing. It is important to point out that, in convex probes, themaximumTx angle
relative to the curvature normal, ,maxb limits the aperture that can effectively be used for the c-crf images (see
figure 1(c)). Since the aperture is curved, a ‘ray’with the samej is emittedwith different b depending on the
location on the aperture, constraining the possible emitting locations for such a ‘ray’. This limits the image area
that can be reconstructed for each angle ,nj in addition to the limit imposed by the finite length of the physical
aperture. For convenience, the maxb can be related to a transmitting aperture length (see figure 1(c)):

( )l R2 sin . 8tx maxb=

The value of ltx represents themaximumpossible diameter of the insonified area.Note that the transmitting
aperture constrains the image area only where its edges lie within the physical aperture. The centre of the
transmitting aperture is locatedwhere b=0, i.e. at .nJ j= The effective aperture results from the intersection
of the physical with the transmitting aperture, and thus depends on .nj This differs from linear probes where the
effective aperture is always identical to the physical aperture independent of .nj In this study ( maxb =40°,
R=60.34mm) ltx is 77.6mm,whereas the physical aperture length is 61.2mm.

2.5. Phase-shift tracking
At this point, the compounded crf (c-crf)mode images have been sampled on aCartesian grid, either because the
DASwas performed that way or via the coordinate transformation following the compounding. TheCartesian
grid is a prerequisite for the spatial frequency domain (FD)filtering suggested in Stähli et al (2020) (section 3.2, p.
8 right column and p. 9 left column) for synthesising Tx–Rx-steered images from the Tx-only steered c-crf-
mode images.

For a detailed description of theCMA tracking algorithm, the reader is referred to Stähli et al (2020). Here,
we summarise themost relevant aspects for ourwork: (i) the Rx angle set { }my is chosen identical to { }nj in
order tominimise the computational cost of the subsequent SoS inversion. (ii)Wequantify the phase shift
between successive pairs of antidromically changing angles ( ) ( ), , .n m n m1 1j y j y+ + In this process, we
generate Tx–Rx steered images ( )u x z, , ,n mj y¢ on thefly from the ( )u x z, , nj using FDfiltering. As already in
Stähli et al (2020), tracking over antidromic sequences is in agreementwith theCMAapproach because the
angles were chosen equidistantly.We quantify the phase shift as the argument (phase angle) of the pixel-wise
Hermitian product of the successive crf-mode images. Thereby, we apply aHannwindow convolution kernel in
z (dimension 4mm) to theHermitian product before calculating the argument, in order to reduce phase noise
and thus improve the SNR. (iii) For data reduction, the phase shift is accumulated along antidromic sequences
of nj and ,my to yield phase shifts ( )x z n m, , ,qD ¢ ¢ between ( ) ( ), , ,n m n m1 1j y j y¢ ¢+ ¢+ ¢ where nj ¢ and my ¢
range from−55° to 55° in 5° steps (23 angles). Thefiner initial angle step of 2.5° for coherent compounding has
been chosen empirically with the goal to avoid phase aliasing, which occurs depending on SoS contrast when the
phase shift (which is roughly proportional to angle step size) becomes larger than .p A2.5° aperture radius is
used for the directional filter.

The result of the phase tracking is a collection of 2Dphase-shiftmaps, ( )x z n m, , , ,qD ¢ ¢ with n¢ and m¢
ranging from1 to 22. Thereby, phase-shiftmaps from exchanged starting and ending angle pairs,

( )x z n m, , ,qD ¢ ¢ and ( )x z m n, , , ,qD ¢ ¢ would under ideal conditions be identical apart from a sign change,
given the reciprocity of emitter and receiver. Averaging of reciprocal phase-shiftmaps annihilates differences
betweenTx andRx beamforming, reduces noise, and it reduces the amount of data by a factor of 2, benefitting
computational cost of the subsequent SoS inversion. Themaps for n m ,¢ = ¢ i.e., the ones on the diagonal of the
2D collection ofmaps, correspond to exchanging the emitter and receiver in the transition frombefore to after
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the angle step. Therefore, qD is in theory zero, i.e. contains no information on the SoS, and thesemaps are
not used.

2.6. Speed-of-sound inversion
For SoS inversion, we use the space-domain algorithmdescribed in Stähli et al (2020). Note that we use slightly
different notation: ( )c x z, is the true spatial distribution of SoS, whereas ˆ ( )c x z, is the estimated one. The
forwardmodel assumes straight-ray propagation and expresses the phase shiftmaps ( )x z n m, , ,qD ¢ ¢ in terms
of line integrals of the slowness deviation ( )x z, ,sD the difference between the inverse of ( )c x z, (i.e. the
slowness) and the inverse of c0 (the a priori slowness). Because the integration is a linear operation, it can be
written inmatrix operator notation as

· ( )M , 9q sD = D

where sD is a column vector containing the vectorised discrete slowness deviation, and qD is a column vector
concatenating the vectorised discrete phase-shiftmaps for the different combinations of ( )n m, .¢ ¢ As pointed out
above, only those combinations are taken into account which are not equivalent or zero by time-reversal
symmetry. The forward operator M is built fromdiscrete line integrationweights, which are defined assuming
bilinear interpolation of the discrete slowness deviation along continuous straight integration lines (illustrated
infigure 2(a)). For a concise description of the forward operator, the reader is referred to Stähli et al (2020). As in
previous studies, rows in M corresponding to elements of ( )x z n m, , ,qD ¢ ¢ are set zerowhere the grid node
( )x z, is outside the image area towhere ultrasound is transmitted/fromwhere it is received (determined by the
effective aperture) for any of the angles ( ), , , ,n m n m1 1j y j y¢ ¢+ ¢+ ¢ i.e. in areaswhere no echo data is available.
Similarly, tomask out phase-shift noise resulting from electric crosstalk, rows in M are set zero that correspond
to grid nodes locatedwithin thefirst 7mmdistance from the probe aperture (illustrated infigure 2(a)). For the
convex array, a new feature is that rows corresponding to grid nodes outside the sector area are also set zero
(illustrated infigure 2(a)).Moreover, columns of M corresponding to elements of ( )x z,sD are zero for grid
nodes ( )x z, above the curvature radius of the aperture surface, this because the line integrationweights are
trivially zero in this area.

We usefirst-order Tikhonov regularisation (Willoughby 1979) towell-pose the inverse problem. This
regularisation constrains the first-order spatial derivatives of ,sD thereby imposing spatially smooth solutions
for SoS. For this purpose, we define Dx and Dz as thefirst-order finite difference operators along x and z,
respectively. For the convex array, the area above the curvature of the probe aperture (i.e. the area that is located
outside the tissue) is excluded from this regularisation. Instead, we use zero-order Tikhonov regularisation
(Willoughby 1979) inside this area tomaintain the invertibility of the forward operator. This is implemented via
a diagonalmatrix c that contains ones in diagonal elements that correspond to pixels inside that area and zeros
elsewhere, and by restricting the operators Dx and Dz to the pixels outside that area. Thus, the estimated

Figure 2. (a) Sketch of the forwardmodel geometry. The straight integration paths for an exemplary Tx/Rx angle combination are
indicated by bold dark gray lines. The area that is set zero in all phase shiftmaps is depicted in dark gray. This includes a 7mmrange in
front of the aperture surface, and the areas outside the sector area. The angle range that can be used for a pixel at ( )r, ,J limited by

,maxb is depicted in light gray. This is a subset of the full range for nj ¢ and .my ¢ (b) Sketch illustrating the effect of themaximumangle
spread ,Dj y in the 2Dmatrix of phase-shiftmaps defined by nj ¢ and .my ¢ For clarity, we assume here that the full angle range is
covered by 7 steps, with indices n¢ and m¢ running from1 to 8, even though the actual number of steps is larger. Each small square
corresponds to a phase-shiftmap obtained by tracking between the angle pairs corresponding to the index pairs in its lower left and
upper right corner. The solid grey square indicates a subset centred around a view direction .J Combining corresponding sets from all
view directions (indicated by dashed grey squares) results in a subset that is built fromupper and lower diagonals (indicated by bold
black lines). The number of diagonals is limited by ,,Dj y here illustrated as the absolute difference between indices being smaller than
or equal to 2.
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slowness deviation ŝD is computed as (Willoughby 1979, Tarantola 2005)

arg M D

D

min x x

z z

2 2 2

2 2 2 2
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where ,xg ,zg and g are the regularisation parameters. Note that, because regularisation of the spatial derivative
acts only on pixels outside the aperture surface, the values of ŝD in these pixels do not depend on the ones inside
the aperture surface. Therefore, the choice of g has no visible influence on the estimated slowness deviation
map, butmerely enables the inversion of the bracket in equation (10). Finally, themap of the spatial distribution
of SoS can be calculated from the slowness deviation as
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ˆ ( )
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x z

c

,
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,
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. 11

0

s
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D +

As in previous publications (Stähli et al 2020, 2021), we apply substantially stronger regularisation along x
than along z.The reason is two-fold: (i) Lateral variations of SoS have a substantially stronger influence on phase
shift than axial ones do, therefore lateral variations can be regularizedmore strongly without compromising
resolution. (ii)The expected anatomy in liver imaging has a layered structure. This structure is least
compromisedwhen using a stronger lateral than axial regularisation.

Given the curvature of the convex probe, itmay often be reasonable to expect tissue layers of the abdominal
wall and the liver surface to be bent around that curvature. In this case, the regularisation along x would not
optimally capture the geometry of tissue layers. As an alternative, we therefore suggest using a polar
regularisation, namely of the first-order derivatives along lines of constant r and constant .J We implement this
by defining finite difference operators Dr and DJ based on Dx and Dz as

( ) ( )aD D Dcos sin constant , 12r z xJ J J= +

( ) ( )r bD D Dcos sin constant , 12x zJ J= -J

and by re-defining the SoS inversion analogue to equation (10) as

( ) · ( )M M D D D D M . 13T
x

T
z r

T
r

T2 2 2 1cs g g g qD = + + + DJ J
-^

Note that, in this definition, DJ does not perform the actual derivative along the variable J itself, but along
the arc length of lines of constant r, i.e. the unit of this derivative is [m−1] and not [rad−1].With this definition,
the same regularisation parameters can be used for polar andCartesian regularisation in order to provide an
intrinsically fair comparison between them. This is why the same variables ,xg zg are used in equation (13) as in
equation (10). A challenge here is that thematrices Dx and Dz must have the same size in order to be able to apply
equation (12a). If thematrices perform a simple first order finite difference, this condition is notmet, because
thefirst order differences are defined at points half-way between the initial grid nodes in either x or z,
respectively. In order tomatch the size of thematrices, the finite differences have to be defined at points centred
between grid point in x and z.To achieve this, Dx performs a two-point average in z together with the finite
difference in x, and vice versa for D .z In this study, we compare the results for the two types of regularisation,
Cartesian and polar. For the fairest comparison, we used the same definition of Dx and Dz in both approaches. It
turned out that the two-point average leads to a numerical instability in the SoS reconstruction resulting in a
checker-pattern SoS noise. To eliminate this pattern, the SoS imageswere convolvedwith a 2 by 2 pixel averaging
kernel (2 by 2 elementmatrix with values 0.25).

Compared to theCUTE implementation in linear probes, we introduce again a new featuremotivated by the
convex probe geometry. Although the range for nj ¢ and my ¢ is substantially larger for convex than linear arrays
due to the curved geometry, only part of this range can be effectively used depending on the view direction J and
the depth r, limited by maxb (see figure 2(a)).We therefore introduce a parameter ,Dj y that limits themaximum
allowed spread (difference) between nj ¢ and ,my ¢ by taking into account—in equation (13)—only phase-shift
maps for ( ) ( ), ,n m n m1 1j y j y¢ ¢+ ¢+ ¢ for which ∣ ∣ .n m ,j y- Dj y¢ ¢ As illustrated infigure 2(b), the role of

,Dj y can be understood as follows: The sets of angles nj ¢ and my ¢ result in a 2Dmatrix of phase-shiftmaps, for all
possible combinations of n n 1¢  ¢ + and m m1 .¢ +  ¢ For a specific view angle ,J the goal is to limit nj ¢ and

my ¢ to values that arewithin a certain range relative to ,J as if wewere using a linear array probe pointing into
direction .J This corresponds to choosing a square subset of the 2Dmatrix of phase-shiftmaps. Combining the
subsets corresponding to different J results in a subset that consists of upper and lower diagonals of the 2D
matrix forwhich ∣ ∣n mj y-¢ ¢ is limited by a .,Dj y

Wehave implemented the SoS inversion for an input and output pixel resolution of 2 by 2mm. The phase
shiftmaps are thus downsampled to this resolution before applying the inversion.
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2.7. Ultrasound acquisition system
Weused a SUPERSONIC®Mach® 30 clinical ultrasound system for data acquisition, with aC6-1X convex probe,
both provided byHologic®—Supersonic Imagine®, Aix en Provence, France. See table 1 for probe specific
parameters. AMatlab® (R2021a,MathWorks Inc., Natick,Massachusetts, USA) based framework on a host PC
generates scan sequence parameters that are sent to the system via Ethernet, and the collected data are
transferred back to the host PC via the same Ethernet connection. The data processing is performed inMatlab®.

2.8. Phantoms
To validate the accuracy of ourCUTE implementation, we use a liver imaging phantom (see figure 3) built from
gelatine (Spezial Gelatine, Geistlich PharmaAG, Switzerland) , agar (A1296, SigmaAldrichChemieGmbH,
Germany), and bakery flour (NaturaplanWeissmehl, Coop, Switzerland). It consists of four layersmimicking
the human tissue anatomy. A curved indentation in the first layermatches the phantom surface to the curvature
of the convex probe to allow stress-free acoustic contact. On one hand this protects the phantom from rupture,
on the other hand potential stress-related variations of SoS are avoided thatway. The size of the phantom is 27
cm in x, 15 cm in z, and 3 cm in y.The large lateral dimension (x)minimizes the interference of spurious
reflections of grating lobes from the lateral phantom-air interface with echoes fromwithin the image area.
Similarly, the 3 cm thickness in y avoids out-of-plane reflections at the phantom-air interface. Agar (2wt% in
water)was used tomimic fat layers and gelatine for themuscle layer (25wt% inwater) and the liver (20wt% in
water). Bakery flour (2wt%)was added to both gelatine and agar to provide diffuse echogenicity. The nominal
SoS values of the different layers were determined using a through-transmission time-of-flight (ToF) setup: a
piston transducer with 13mmaperture diameter, 5MHz centre frequency (Panametrics-NDTV309,Olympus,
Hamburg, Germany) is used to transmit plane pulses through a 15mmwater path and detect the echo from a
plane steel reflector that is aligned parallel to the transducer aperture surface. Samples of the investigated
material are prepared inflat bottom circular cuvettes (25mmdiameter, 10mmheight). After gelation, samples

Table 1. Summary of parameters.

Nominal centre frequency 3.46MHz

Centre frequency used for acquisition 3.0MHz

Probe curvature radius (R) 60.34mm

Element pitch 0.3360mm

Number of elements 192

Aperture curvature length 60.94° (64.18mm)
Aperture length 61.2mm

a priori SoS for Tx delays (ctx) 1540m s−1

a priori SoS forDAS (c0) 1550m s−1 (phantom)
1570m s−1 (volunteer)

Cartesian grid dimension in x 140mm

Cartesian grid dimension in z 100mm

crf-modeCartesian grid resolution x 0.3360mm (1 pitch)
crf-modeCartesian grid resolution z 0.3360mm (1 pitch)
Polar grid dimension in J 60.94° (curvature length)
Polar grid dimension in r 130mm

crf-mode polar grid resolution in J 0.319° (1 pitch at aperture)
crf-mode polar grid resolution in r 0.3360mm (1 pitch)
SoSCartesian grid resolution in x 2mm

SoSCartesian grid resolution in z 2mm

Rawdata angle range kb −40° to 40° in 1° steps
c-crf angle range nj −55° to 55° in 2.5° steps
c-crf angle radius 3°
Phase shift kernel dimension in z 4mmHannwindow

Phase shift angle range ,n mj y¢ ¢ −55° to 55° in 5° steps
Phase shiftfilter 1/e radius 2.5°
Regularisation parameter x

2g in x

or J
20

Regularisation parameter z
2g in z

or r

0.1

Amplitude regularisation para-

meter g
1

MaximumTx–Rx angle spread ,Dj y 30° (6 steps of 5°)
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are removed from the cuvette and placedwithin thewater path. After letting time for temperature equilibrium,
the SoS is calculated from theToF difference (lag of cross-corelation peak) compared towater considering the
known SoS of water. This procedure yielded SoS values of 1490m s−1 (fat-mimicking), 1570m s−1 (muscle-
mimicking), and 1555m s−1 (liver-mimickingmaterial), with an accuracy of 5m s−1. Published values for real
tissues are around 1475m s−1 for fat (Gross et al 1978), 1575m s−1 formuscle (Chivers and Parry 1978), and
1600m s−1 down to 1500m s−1 for liver depending on increasing steatosis grade (Robinson et al 1982, Lin et al
1987, Shigemoto et al 2001).

We calibrate the systemusing a uniform calibration phantom to reduce the influence of differences between
themodel assumptions and actual experimental conditions (especially e.g. the influence of 3D sound
propagation versus 2D assumption, acoustic lense). This phantomhas the same dimensions as infigure 3, but is
built fromgelatine (15wt% inwater) and bakery flour (2wt%), with a nominal SoS of 1540m s−1.

2.9. Summary of parameters
Table 1 summarises the acquisition and reconstruction parameters that are used in this study.Note that the
reconstruction parameters are empirically optimised in the trade-off between computational cost and SoS image
quality. Amore systematic parameter optimization is beyond the scope of this study.

3. Results and discussion

This section shows results obtainedwith the convex probeCUTE implementation using data acquired in the
calibration phantom, the liver imaging phantom, and in vivo in a healthy volunteer. All the three examples
compare implementations using polar andCartesian coordinates forDAS and polar andCartesian
regularisation. The results are shown together with the corresponding B-mode images, which are obtained from
incoherent compounding (of the squared envelope) of the c-crf images over the full range of .nj The SoS images
are shown in their actual pixel resolution (i.e. no interpolation or other post-processing), and a consistent
display range is chosen across all phantom and volunteer results.

3.1. Calibration phantom
Figure 4 shows results of the calibration phantom. Calibration SoSmaps ˆ ( )c x z,cal are reconstructed using the
differentDAS and regularisation approaches. To reduce artefacts related toUS speckle, we acquire data eight
times after slightly repositioning the probe leading to different speckle realisations, and average the resulting
phase shiftmaps. Averaging the phase shiftmaps—as opposed to the SoSmaps—has a practical advantage: for
one calibrated SoS reconstruction, only one calibration phase shiftmap needs to be loaded and processed instead
of eight. As expected, the SoS appears approximately uniform, althoughwe observe a slight SoS increase with
depth. The absolute SoS values, however, deviate significantly from the nominal value ccal (1540m s−1). The
results infigures 4(a) to (g)were obtainedwith an a priori SoS c0 of 1550m s−1. Interestingly, the calibration
result depends on the a priori SoS: figure 4(h) shows a summary of depth profiles of the calibration SoSmap for
different choices of c0 from1510 to 1590m s−1. Not only does the calibration SoS vary (by around±10m s−1)
but also the shape of the depth profiles. For this reason, calibration has to be performed for each c0 separately. In
our experience, the spatially dependent bias varies between probes andmay result from system-specific

Figure 3. Sketch (not to scale) of liver imaging phantom,which comprises four layersmimicking the subcutaneous fat layer (sf ), the
rectus abdominismuscle (m), the postperitoneal fat layer (pf ), and the liver tissue (l). The dimensions of the phantom andof the layers
are indicated (in cm). The circular indentation in the upper phantom surfacematches the probe curvature.
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parameters that are not accounted for in our forwardmodel, such as the influence of the elevational profile of the
acoustic lense. In all following figures, we use these calibrationmaps to compensate the subsequent SoS
reconstructions for this bias, by applying amodified version of equation (11):

ˆ ( )
ˆ ( )

ˆ ( )

( )c x z

x z
c c x z c
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Note that, in equation (14), ˆ ( )c x z,cal is still determined according to equation (11). In the special case where
ˆ ( )x z,sD ismeasured on the calibration phantom itself, the left bracket is equal to the inverse of ˆ ( )c x z, ,cal and

equation (14) reduces to ˆ ( )c x z c, cal= (i.e. uniform and quantitatively correct) as desired. This is illustrated in
figures 4(i) to (k), which showdepth profiles of themean and standard deviation of the calibrated SoSmap of the
calibration phantomover the different speckle realisations. As expected, themean SoS value is trivially equal to
ccal (1540m s−1). The standard deviation represents the uncertainty due to speckle in an ideal scenario where SoS
and echo intensity are uniform, and it can be seen as a lower limit to the experimental uncertainty of our
implementation. Results for different choices of c0 illustrate that this uncertainty depends on c :0 it is smallest
when c0 is near the actual SoS of the phantom, c ,cal probably due to a dependence of the Tx/Rx focusing quality
of the c-crf images on the SoSmismatch.

3.2. Liver imaging phantom
In this example, we show SoS reconstructions using data from the liver imaging phantom, for c0=1550m s−1.
The B-mode image shown infigure 5 allows us to distinguish the different layers of the phantom thatwere
indicated infigure 3.When using theCartesian regularisation, SoS images nicely reveal this layered structure (see
figure 5(b) and (c)).Moreover, both beamforming approaches (polar andCartesian) yield very similar results,
with the polar beamforming being roughly three times faster in our implementation. The SoS inside the liver is
approximately uniform, and its quantitative value is in good agreement with the nominal value. The SoS of the
muscle and fat layers are slightly under- and overestimated, respectively. Thismay be caused by the partial
volume effect (i.e. the apparent decrease of contrast due to blurring of features that are below the resolution
limit) if the layer thickness is at the axial resolution limit of the SoS image.

The polar regularisation yields slightly different results (figures 5(e) and (f)). The different layers arewell
resolved, but the spatial distribution of the SoS deviates from the true layer interfaces at the lateral edges of the

Figure 4.Calibration phantom results. (a)B-mode image example. (b)–(c) SoSmap forCartesian and polarDAS, respectively. Both
results useCartesian regularisation. (d)Corresponding depth profiles at x=0 forCartesian (solid) and polarDAS (dashed line).
(e)–(f) SoSmap forCartesian and polarDAS, respectively. Both results use polar regularisation. (g)Corresponding depth profiles at
x=0 forCartesian (solid) and polarDAS (dashed line). The bold grey lines in (d) and (g) indicate the nominal SoS value. (h)Depth
profiles at x=0 of the calibration SoSmap (polarDAS, Cartesian regularisation) for different a priori SoS values of 1510m s−1 (solid
bold), 1550m s−1 (solid), and 1590m s−1 (dashed). The values of the a priori SoS are indicated by grey lines. (i)–(k) depth profiles of
mean±standard deviation of the calibrated SoS over eight acquisitions with independent speckle realisations, for different a priori
SoS values of 1510m s−1, 1550m s−1, and 1590m s−1, respectively.
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image domain. The interfaces are bent upwards in this area and thus disagree with the actual phantom geometry.
Still, towards the centre of the domain the reconstructed layers are approximately horizontal in agreementwith
the actual geometry. The bending at the edges is caused by the polar regularisation favouring smoothness along
lines of constant radius.Whereas the SoS value of the liver compartment is accurately reconstructed at its
surface, it decreases with depth, resulting in an overall lower SoS value thanwithCartesian regularisation.

3.3. In vivo results
Figure 6 shows preliminary volunteer results of imaging the liver through the ventral part of the abdominal wall,
for c0=1570m s−1. Ethics approval was obtained fromBern cantonal ethics board, ID 2020-03041. Like in the
phantom example, polar andCartesian beamforming approaches yield very similar results. The SoS images
show the fat andmuscle layers and capture their varying thickness along the probe aperture. Rather than as a
varying layer diameter, the varying thickness is reflected as a gradually varying layer contrast, again an indication
that these layers are at the resolution limit (partial volume effect). As expected from literature, SoS values in the
fat are lower than in themuscle.WithCartesian regularisation, the apparent interfaces of the superficial layers do
not follow the curvature of the actual interfaces observed in the B-mode image. Polar regularisation captures
their appearancemore accurately, because the regularisation along lines of constant radius naturally favours a
curved geometry of interfaces. As already in the phantom experiment, the SoS shows the unexpected negative
drift towards depth compared toCartesian regularisation. In both approaches, the SoS in the superficial part of

Figure 5. Liver imaging phantom results. (a)B-mode image ( f: fat,m: muscle, l: liver). (b)–(c) SoSmap forCartesian and polarDAS,
respectively. Both results useCartesian regularisation. (d)Corresponding depth profiles at x=0 forCartesian (solid) and polarDAS
(dashed line). (e)–(f) SoSmap for Cartesian and polarDAS, respectively, both using polar regularisation. (g)Corresponding depth
profiles at x=0 for Cartesian (solid) and polarDAS (dashed line). Grey bars in (d) and (g) indicate the nominal SoS values of the
phantom layers.

Figure 6. In vivo results in a healthy volunteer. (a)B-mode image ( f: fat,m: muscle, l: liver). Dashed lines indicate tissue interfaces,
arrows point at large blood vessels. (b)–(c) SoSmap forCartesian and polarDAS, respectively, withCartesian regularisation. (d)
Corresponding depth profiles at x=0 for Cartesian (solid) and polarDAS (dashed line). (e)–(f) SoSmap forCartesian and polarDAS,
respectively, using polar regularisation. (g)Corresponding depth profiles at x=0 for Cartesian (solid) and polarDAS (dashed line).
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the liver (around 1580m s−1) agrees with reported values for healthy liver (Robinson et al 1982, Lin et al 1987,
Shigemoto et al 2001). Unlike in the phantom results, the liver SoS becomes strongly deteriorated below roughly
50mmdepth.Here, we observe horizontal artifacts that are probably caused by the relatively large anechoic
areas (blood vessels) observed in the B-mode image. Such artifactsmay in the future be avoided in amore
sophisticated implementation of CUTEwhere the absence of phase shift data within these regions is explicitly
taken into account. Overall, in vivo results show amuch higher level of SoS variations inside the liver layer
compared to phantom results. This observation is in agreementwith linear array results of previous studies
(Stähli et al 2020, 2021), and is thus not related to the convex probe implementation. The stronger variations
may be caused by a higher level of reverberation clutter and strongerUS aberration due to themore complex
structure of real tissue compared to the phantom.

3.4. Role of regularisation for spatial resolution
Both phantom and in vivo results show artifacts in the shape of lateral or azimuthal streaks and a straightening/
bending of superficial layers when using Cartesian/polar regularisation. These observationsmay raise doubts as
towhether the layer structure of the SoS images is not simply the result of a very low lateral/azimuthal
resolution, imposed by the strong lateral/azimuthal regularisation. In order to clarify this aspect, we use the
same phantom as infigure 3 and acquire data with the probe tilted parallel to the imaging planewhile
maintaining contact between the aperture and the curved phantom surface. This is equivalent to rotating the
phantomwith respect to the z-axis, as seen in the B-mode image infigure 7(a). Infigure 7(b), we show the
reconstructed SoS image using polar DAS together withCartesian regularisation. Due to the tilt, the direction of
maximum regularisation (x) does not agreewith the direction of the layer interfaces of the phantom. Still, the
reconstructed SoS image follows the tilted layer geometry in the lateralmiddle of the image area. This
demonstrates that the reconstructed layer geometry is not simply a result of the lateral regularisation. Only at the
lateral edges of the image domain, the reconstructed distribution tends towards horizontal layers, resulting in a
slight ‘s’-shape of the layer interfaces. A similar result is obtained for polar regularisation: infigure 7(c), the SoS
follows the tilted plane geometry in the lateralmiddle of the image area, but towards the lateral edges, the
reconstructed distribution is forced towards curves with constant radius. Aswewill discuss in the next section,
the different behaviour in different areas is the result of a laterally varying data coverage: towards the lateral
edges, less phase shift data is available due to reduced angle coverage than in themiddle, thus the a priori
information (horizontal layers) encoded by the regularisation termdominates the available informationmore in
these areas.

Further, to corroborate that the observed lateral streaks are not indicative of a bad lateral resolution due to
regularisation, figure 7(c) illustrates the spatially dependent point-spread functions (psf-s) related to our inverse
problem. In linewith amethod used in geophysics (Backus and Freeman 1968, Tarantola 2005) and adapted to

Figure 7. (a)B-mode image of the liver imaging phantomwith tilted probe. (b)Corresponding SoS imagewhen usingCartesian
regularisation, and (c)when using polar regularisation. (c)–(d) Spatially dependent theoretical point-spread functions related to our
inverse problem. (e)Prediction of point-spread functionwhen taking into account tracking kernel size and the Tx/Rx beamwidth. (f)
Profile along the dashed line in (e). No colour bars are shown in thesefigures because the focus is on the spatial distribution profiles,
not quantitative values.
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US tomography (KortaMariartu et al 2020), these psf-s are defined in a theoretical way based on the linear
forwardmodel and its pseudo inverse:

ˆ · ( )M M . 15s sD = D+

Equation (15) reads as follows: putting together equations (10) and (14), ŝD is the reconstructed slowness
distribution resulting from the true distribution .sD If sD is a point source, i.e. has the value one in a single
pixel and is zero everywhere else, then ŝD is the psf of that point source. Thematrix ˆ M MDS = + thusmaps
point sources to psf-s, for which reason it is called themodel resolution operator (Tarantola 2005). A point
source sD is a unit vector containing a one at the index that corresponds to the source location. The result of
multiplying ŜD to sD is equal to the columnof ŜD at the column index that corresponds to the source
location. In summary, ŜD contains the psf-s for all possible source locations, vectorised as its columns at the
corresponding indices. The fundamental assumption here is that the forwardmodel M is accurate, for which
reasonwe call the psf-s theoretical. Figure 7(d) shows a selection of these psf-s, for a grid of pixels located along 5
different radial lines with azimuth (−22°:10°:22°) at 3 different depths (15mm, 40mm, 70mm). Note that, even
though the appearance of layered structures is substantially influenced by the regularisation type, this influence
is hardly seen in the psf-s. For this reason, we only showpsf-s considering theCartesian regularisation.

The psf-s infigure 7(d) demonstrate that the azimuthal resolution of our inverse problem corresponds to
roughly the pixel size independent of the position inside the image sector. This observation is reasonable:
azimuthal variations (i.e. perpendicular to ray paths) of SoS are far less difficult to detect (larger phase shift
magnitude) than radial variations (i.e. parallel to ray paths). The stronger lateral/azimuthal than axial/radial
regularisationmakes best use of this anisotropy in the available information, by regularising the SoS inversion
morewhere it least compromises resolution. This anisotropy also explains the lack of visibility of the influence of
regularisation type on the psf-s: point-like structures are easily detected due to the strong azimuthal gradient.
The differences due to regularisation type are small compared to themaximumamplitude of the psf-s, but
become visible via the overlap of different psf-s when ‘convolving’with a layered structure.

The theoretical psf-s in figure 7(d) show the lower limit of spatial resolution determined by the inverse
problem alone. In practice, the spatial resolution is additionally limited by the tracking kernel size in z, and by the
Tx/Rx focal diameter in .J Infigure 7(e)we approximate this by convolving the result from figure 7(d)with a
5-pixelHannwindow in z (mimicking the tracking kernel) and a 7-pixel Hannwindow (approximating the
observed Tx/Rx focal profile, not shown) in x. Figure 7(e) suggests that the psf of our implementation is rather
isotropic in an area above 50mmdepth andwithin±30mmaround the z-axis. The lateral width of these psf-s
suggest that the lateral streaks observed in the phantomand volunteer results are not the result of a low lateral/
azimuthal resolution. Rather, these streaks occur due to phase shift noise. The SoS inversion generates from this
noise what is least penalised by regularisation: variations that show a smaller lateral/azimuthal than axial/radial
gradient.

Note that bothfigures 7(d) and (e) indicate a lateral variation of radial resolution: it is best near the centre of
the probe aperture, andworsens towards depth and towards the lateral sector borders. Again, this is the result of
the spatially varying data coverage that will be discussed in the next section. Figure 7(f) shows a profile along the
z-axis through the psf-s in the lateralmiddle of the image area. The full-width half-maximumof the profile at 30
mmdepth indicates an axial resolution of our implementation of roughly 10mm in the superficial area of the
SoS images, supporting the hypothesis from earlier figures that the layers in this area were at the resolution limit.

3.5. Role ofmaximumangle spread
In section 2.6, we have introduced a novel feature of the SoS inversionmotivated by the convex array geometry,
i.e. a limitation to themaximum spread ,Dj y between Tx andRx angles nj ¢ and my ¢ for whichwe take into
account phase shift data. Figure 8 illustrates the influence of ,Dj y on the angle coverage and thefinal SoS image.
We define the angle coverage for each pixel as the total number of phase-shiftmaps containing data for that
pixel. The spread ,Dj y is defined in numbers of the 5° angle step size thatwas used for the final phase-shiftmaps.
Given that the size of the angle sets is 23, 22 by 22 phase-shiftmaps can in principle be obtained.However, after
neglecting the 22 on the diagonal that contain zero phase-shift data (tracking between switched Tx/Rx angles)
and averaging the ones that are equivalent by transmit/receive reciprocity, amaximum total of 231 independent
phase-shiftmaps are available. Out of these,many contain no phase-shift data because the angle spread is too
large given .maxb Figure 8(a) reveals for each pixel themaximumpossible coverage. For amaximum spread of 6
angle steps (same as in previous results) (figure 8(b)), the angle coverage is in large part of the image area equal to
themaximumpossible value. It only decreases slightly for superficial pixels that are closer than 25mm to the
aperture surface. Thus, the corresponding SoS images reveal hardly any difference in the axial resolution of the
upper phantom layers (figures 8(e) and (f)). For amaximum spread of 3 angle steps (figure 8(c)), the angle
coverage is substantially reduced in the area covering the upper phantom layers. As a result, the corresponding
SoS image (figure 8(g)) shows a slight axial blurring and a reduced contrast. Based on this analysis, we decided
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that amaximum spread of 6 angle steps is a good compromise between image quality and computational cost.
Note that all the angle coveragemaps (figurs 8(a) to (c)) reveal a lateral variation due to the limited probe
aperture. This results in a lateral variation of the strength of regularisation relative to data availability, and
explains the lateral variation of axial resolution and the straightening/bending of reconstructed layer boundaries
discussed earlier.

3.6. Role of the a priori speed of sound
Thefirst step of CUTE is toDAS the crf-signals using an a priori uniform SoS c .0 The chosen value inherently
determines the detected phase shift and thus the reconstructed slowness deviation. It is accounted for in
equation (11), which assumes that the reconstructed slowness deviation is additive to the initial guess. In
addition, the calibration in equation (14) is expressed assuming again an additive correction to the slowness
deviation.Here, this assumption of linearity/additivity is experimentally validated. Figure 9 shows SoS images
obtained for the liver phantomusing different values of c0 ranging from1510 to 1590m s−1, using theCartesian
regularisation. For each c ,0 the calibrationwas performed using calibrationmaps that were obtainedwith the
respective same c .0 Thefinal SoS images after calibration reveal that the influence of c0 on thefinal SoS values is

Figure 8. (a)–(c)Maps of angle coverage (number of phase-shift data available per pixel) for amaximum spread ,Dj y of 22, 6, and 3
angle steps, respectively. The colour bar is shown in (d). (d)Depth profiles of angle coverage formaximum spread of 22 (bold solid), 6
(solid), and 3 (dashed) angle steps. The location of these profiles is indicatedwith dashedwhite lines in (a) to (c). (e)-(g) SoS images
corresponding to (a)–(c), respectively. No colour bar is shown because the focus is on the spatial distribution profile, not quantitative
values. (h)Depth profiles of SoS images obtainedwith ,Dj y equal to 22 (bold solid), 6 (solid), and 3 (dashed) angle steps.

Figure 9. (a)–(e)Reconstructed SoSmaps for liver phantomusing a priori SoS values of 1510m s−1, 1530m s−1, 1550m s−1, 1570m
s−1, and 1590m s−1, respectively. (f)Depth profiles of SoS for 1510m s−1 (solid bold), 1550m s−1 (solid), and 1590m s−1 (dashed).
The values of the a priori SoS are indicated by gray lines.
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negligible over a larger range of c0 values. Themain visible differences are the horizontal bar artifacts inside the
liver compartment. These artifacts are least pronouncedwhen c0 is in-between the SoS of the different layers and
become strongerwhen c0 deviates from that value. This effect is probably related to Tx/Rx focusing of the c-crf
images: for a c0 that is closer to the average SoS of the layers above the liver compartment, the Tx/Rx focusing is
better inside the liver compartment, resulting in less phase-shift noise. For previous phantom results, we used
c0=1550m s−1 which led to an intermediate level of artifacts.

We also analyse the effect of c0 on the in vivo SoS images, shown infigure 10. Contrary towhatwe observe in
the phantom, the comparison of these images show a strong dependence of the reconstructed SoS on c .0

Whereas the reconstructed SoS in the superficial part of the liver (<40mmdepth) is quite robust, it varies by up
to 100m s−1 below 60mm.On the one hand, this difference in robustness between superficial and deep tissue
can be caused by the differences in the angle coverage between the two regions. Poorer angle coverage increases
the sensitivity to phase-shift noise. On the other hand, errors due towavefront aberrations caused by superficial
layers are likely to causemore distortions in reconstructed echoes, and thusmore phase-shift errors, the deeper
the echoes are located. Because the real tissue ismore heterogeneous than our phantom, these aberrations are
stronger in in vivo experiments.

4. Conclusion

In this study, we have shown that our implementation of CUTE for convex probes is able to reconstruct the
layered distribution of the SoS in the liver imaging phantom. Reconstructed absolute SoS values in the liver-
mimicking part of the phantom are accurate and robust against varying the a priori SoS value used forDAS. This
result suggests that it is in principle possible to quantitatively image the SoS at ameaningful depth for liver
diagnosis, despite the small size of the probe aperture relative to the image area.Moreover, SoS images show a
clear distinction between the different layers, demonstrating the spatial resolving power of our technique. Note
that, while we observe that the ability to resolve 10mm thick layers is in good agreementwith the theoretically
predicted psf-s, afinal conclusion on the achievable spatial resolution cannot be drawn based on our results. The
spatial resolution depends on a subjective choice in the trade-off between spatial and contrast resolution,
determined by beamforming, tracking kernel size and regularisation. The optimumpoint in this trade-off can
vary between subjects, and average optimumparameters will have to be determined by end users depending on
the diagnostic application.

The spatial resolving power of CUTE is confirmed in in vivo results, where subcutaneous fat andmuscle
layers are well distinguished near the lateral centre of the image area.While liver SoS values are reasonable within
thefirst 20mm from the liver capsule, quantitative imaging becomes challenging at larger depths, shown by the
high level of artifacts and strong dependence of the SoS value on the a priori SoS. Probably, this is due to the
aberrations caused by short-scale SoS variations within the different tissues of the abdominal wall, a hypothesis
that needs confirmation using, for instance, numerical simulations and experiments in phantomswith higher

Figure 10. (a)–(e)Reconstructed SoSmaps for in vivo liver data using a priori SoS values of 1510m s−1, 1530m s−1, 1550m s−1,
1570m s−1, and 1590m s−1, respectively. (f)Depth profiles of SoS for 1510m s−1 (solid bold), 1550m s−1 (solid), and 1590m s−1

(dashed). The values of the a priori SoS are indicated by gray lines.
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complexity. Immediate partial solutions for reducing quantitative instabilitymay include: (i) averaging of
reconstructed SoS images overmultiple acquisitions at slightly different probe positions resulting in different
realisations of artifacts; (ii) increased regularisation strength; (iii) the previously proposed Bayesian approach
(Stähli et al 2021) that incorporates a priori known tissue interfaces; (iv) comparing SoS values for afixed pre-set
a priori SoS value forDAS. To further improve robustness, future researchwill focus on correcting for
aberrations viamore sophisticated data processing and novel data acquisition approaches. In addition, itmay be
beneficial to restrict the phase shift data to areas where echoes are reconstructedwith highfidelity, by excluding,
for example, areas containing large vessels, strong clutter, or strong degradation due to aberrations.

Phantom and in vivo results consistently show a difficulty in retrieving the accurate location of interfaces in
the image areas towards the lateral image edges where phase shift data is scarce.We interpret this as an effect of
the reduced axial resolution combinedwith the regularisation favouring specific geometries. As an alternative to
Cartesian regularisation, we have proposed a polar regularisation strategy, to provide an in vivo SoS image that is
more consistent with the curved subcutaneous tissue layer geometry observed in B-modeUS. In the phantom
study, however, we observe a negative drift of SoS towards depth compared to the ground truthwhen using polar
regularisation. It is an open questionwhether thismay be caused by themismatch between the reconstructed
curved and the actualflat layer geometry.While beyond the scope of the present study, this hypothesis could be
tested by comparing the two approaches in phantomswith curved layer geometry. Alternatively, onemaywant
to use aweighted combination of the two strategies, favouring polar regularisation in superficial layers but
Cartesian regularisation in deep tissue.

We have demonstrated that performingDAS on a polar grid provides similar results compared to aCartesian
grid, while being computationallymore efficient by taking into account the depth-dependent spatial resolution
of echoes. For phase-shift tracking and SoS inversion, we have so far usedCartesian coordinates. However,
similar toDAS, polar coordinates wouldmake the coordinate gridsmore consistent with the spatially dependent
resolution. For phase-shift tracking, we used the Fourier-domain Rx steering that requires a spatially constant
Tx/Rx angle set. Even though computationally less efficient, explicit Rx steering could provide the flexibility to
define a set of Tx/Rx angle pairs that is in each pixelmatched to the effective angle range bywhich this pixel is
accessed, i.e. with larger angle steps near the aperture and smaller steps far from the aperture. This could in turn
again improve efficiency and potentially benefit image quality.

Evenwith the current limitations, this study already gives confidence that quantitative imaging of the liver
will be feasible using convex probes, representing a significant step towards an improvedUS-based diagnosis of
liver disease.
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